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ABSTRACT
Here we present the strategy that achieves the lowest possible rate of inbreeding (�F) for a population

with unequal numbers of sires and dams with random mating. This new strategy results in a �F as much
as 10% lower than previously achieved. A simple and efficient approach to reducing inbreeding in small
populations with sexes of unequal census number is to impose a breeding structure where parental
success is controlled in each generation. This approach led to the development of strategies for selecting
replacements each generation that were based upon parentage, e.g., a son replacing its sire. This study
extends these strategies to a multigeneration round robin scheme where genetic contributions of ancestors
to descendants are managed to remove all uncertainties about breeding roles over generations; i.e., male
descendants are distributed as equally as possible among dams. In doing so, the sampling variance of
genetic contributions within each breeding category is eliminated and consequently �F is minimized.
Using the concept of long-term genetic contributions, the asymptotic �F of the new strategy for random
mating, M sires and d dams per sire, is φ/(12M), where φ � [1 � 2(1⁄4)d]. Predictions were validated using
Monte Carlo simulations. The scheme was shown to achieve the lowest possible �F using pedigree alone
and showed that further reductions in �F below that obtained from random mating arise from preferential
mating of relatives and not from their avoidance.

DIVERSITY within a population is an essential part (Wright 1938). Wang (1997) showed that the strategy
of Gowe et al. (1959) could be significantly improvedof global biodiversity in wildlife (Saccheri et al.

1998; Frankham et al. 2002) and in domestic species upon, by not allowing the dam of sire to also have a
breeding daughter, but instead allowing another dam(FAO 1998; Weiner et al. 1992). The critical measure

of the rate of loss of genetic diversity within a population to have an extra breeding daughter. Such strategies are
effective and have provided the basic framework foris the rate of inbreeding (�F; Hartl and Clark 1989).

To maintain genetic diversity and avoid extinction, it is successfully managing populations. Yet they consider
only one generation at the time of selection and mating.essential to minimize �F in small populations, such as

zoo populations or rare domestic breeds (Grundy et al. Here we derive the minimum possible �F for popula-
tions with unequal numbers of breeding males and fe-1998a; Frankham 1999). The classical solution to this
males, by optimizing selection decisions consideringproblem requires equal numbers of breeding males and
multiple generations. The development of pedigreesfemales (Wright 1938). Many populations, however,
over multiple generations can be modeled by using theshow harem structures with highly skewed mating ratios,
concept of long-term genetic contributions (Wray andand often there are difficulties in managing large num-
Thompson 1990; Woolliams et al. 1999; Woolliamsbers of mature breeding males.
and Bijma 2000). In this study we show that manage-It was long believed that the lowest �F in populations
ment of long-term genetic contributions of breedingwith unequal numbers of breeding males and females
individuals across generations is the key to minimizingwas achieved by a breeding system in which a son re-
�F. We establish a lower bound for �F and present aplaced its sire and a daughter replaced her dam (Gowe
simple solution that achieves this bound. We derive theet al. 1959). Thus every dam has one breeding daughter,
expression for the asymptotic �F of the new scheme.and as many dams as sires have also one breeding son
Results are compared with those of Gowe et al. (1959)(such dams are termed dams of sires hereafter). This
and Wang (1997), and the theory was validated usingbreeding system has the effect of reducing the variance
Monte Carlo simulation.of family size, and it is an extension of the classical so-

lution for equal numbers of breeding males and females
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2. M female parents, with 1 male and 1 female offspring each;TABLE 1
3. F � M female parents, with 1 female offspring each.

Notation used for derivation of expressions
Note that only the sex of the breeding offspring and not

the category to which the selected offspring should belong isci Observed contribution to next generation
prescribed. The allocation of the available categories amongof individual i
females is at random. Each of the males is mated to a randomlyri Observed long-term contribution of
chosen female from each category.individual i

The expectation and variance of contributions from individ-Category j Breeding group of same sex with same
ual parents can be considered as conditional on either theirc or r
category (�j, � 2

j , j � 1, 2, 3; see Table 1) or their sex (e.g.,�j, � 2
j Expectation and variance of ri for parent

�F, � 2
F; see Table 1). Since there are two categories of femalein category j

parents, then, using standard results on conditional and un-�F, � 2
F Expectation and variance of ri for a female

conditional means and variances,parent
�M, � 2

M Expectation and variance of ri for a male �F � E[�j | j female category],
parent

� 2
F � E[� 2

j |j female category] � V[�j |j female category].Xj Number of parents in category j
M, F Total number of male and female parents

For Gowe et al. (1959),per generation (F � M)
d d � F/M, number of females mated to a �M � �1 � (2M)�1, � 2

M � � 2
1

single male
�F � d�1�2 � (1 � d�1)�3 � (2F)�1,E[Z], V[Z] Denotes expectation and variance of a

random variable Z � 2
F � d�1� 2

2 � (1 � d�1) � 2
3 � V�, (2)

E[Z|Y], V[Z|Y] Denotes conditional expectation and
variance of Z given Y where V� � d�1�2

2 � (1 � d�1)�2
3 � � 2

F is the variance of the
mean contribution of the female categories.

Noting that the contribution of any breeding individual
accounts for one-half of the contributions of its offspring, the
above expectations and variances can be written as

�F �
1
4 �

N

i�1

r 2
i , (1) �1 � (2M)�1, � 2

1 � 1
4
d� 2

F � 1
4

� 2
1

�2 � (4M)�1 � (4F)�1, � 2
2 � 1

4
� 2

F � 1
4

� 2
1

�3 � (4F)�1, � 2
3 � 1

4
� 2

F .
where ri is the long-term genetic contribution of breeding
individual i and the sum is taken over all N breeding individu- (3)
als in a generation (Wray and Thompson 1990; Woolliams
and Bijma 2000). The long-term contribution measures the Together with the equation for � 2

F in (2), there are four equa-
ultimate contribution of a breeding individual to the gene tions for four unknowns, i.e., � 2

1, � 2
2, � 2

3, and � 2
F, and these can

pool, expressed as a proportion ri � [0 . . . 1]. Per generation, be solved as a set of simultaneous equations. Solving first for
long-term contributions sum to a value of 1, �N

i�1ri � 1 (Wool- V� (using the known �2, �3, and �F) gives V� � (1 � d�1)/
liams et al. 1999). Therefore, to minimize inbreeding on a 16FM, and after solving the simultaneous equations for the
per generation basis, the problem is to minimize �N

i�1r 2
i , given variances � 2

1, � 2
2, � 2

3, and � 2
F, we obtain

that �N
i�1ri � 1. Since E(r 2) � E(r)2 � � 2

r and E(r) � 1/N, this
problem is equivalent to minimizing � 2

r . In the following we
� 2

F �
3
32

(1 � d�1)
FM

and � 2
M �

1
32

(1 � d�1)
M 2

.
derive � 2

r for two existing breeding schemes and derive the
breeding scheme that minimizes � 2

r , which is the scheme with
Using results of Woolliams and Bijma (2000), �F can bethe lowest possible �F.
derived as either 1⁄4 �category j Xj(� 2

j � � 2
j ) or 1⁄4[M(� 2

M � � 2
M) �Breeding systems and their �F : The classical solution to

F(� 2
F � � 2

F)], to giveminimize �F has equal numbers of breeding males (M) and
females (F) per generation, M � F � 1⁄2N, and each breeding

�F � φG/16M, where φG � (11
2

� 1
2
d�1), (4)pair contributes exactly two offspring to the next generation.

In this scheme, the long-term contribution of each breeding
which is a well-known result (e.g., Falconer and Mackayindividual is 1/N, the variance of long-term contributions is
1996). For a fixed number of males (M), �F decreases whenzero, and �F is 1/(4N) (Wright 1938).
d increases (i.e., when the number of females increases).A rate of inbreeding of 1/(4N) is the lowest possible for a

In the scheme of Wang (1997), the female contributing apopulation of N breeding individuals, but can be achieved
male offspring does not also contribute a female offspring,only with M � F. With more females than males, i.e., F � Md
but instead that female offspring is allocated to another femaleand d � 1, only M male offspring are required but there are
contributing two female offspring. The result of Wang (1997)F females that can contribute a male offspring. Hence, M
with random mating can be derived from an analogous analy-females will contribute a male and receive a higher contribu-
sis, after noting that there are four categories. This schemetion than the F � M females that do not contribute a male.
is denoted hereafter as system “W” (see Figure 1b):Consequently, � 2

r � 0 and �F � 1/(4N).
Consider a pedigreed population with discrete generations 1. M male parents, with 1 male and d female offspring each;

where breeding success among offspring of individual parents 2. M female parents, with 1 male offspring each;
is managed, allowing the categorization of parental success. 3. F � 2M female parents, with 1 female offspring each;
For example, for M males and F � Md females in the scheme 4. M female parents, with 2 female parents each.
of Gowe et al. (1959), denoted hereafter as system “G” (see
Figure 1a), there are three categories: For this scheme:

�1 � (2M)�1, �2 � (4M)�1, �3 � (4F)�1, �4 � (2F)�11. M male parents, with 1 male and d female offspring each;
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Figure 1.—Lineages according to different systems of management: (a) system G of Gowe et al. (1959), (b) system W of
Wang (1997), and (c) system V in this study, with three generations (t) and two sires and six dams per generation, i.e., with a
mating ratio (d) of three dams per sire. Overlapping symbols for male and female shows that females of different categories
may mate different males. Boxes enclose the same set of individuals before (top rows with “question-marked” symbols in G and
W) and after the breeding categories have been allocated (randomly or directly) to each parent.

offspring of a breeding individual, which reduces the variance
� 2

1 �
1
4d� 2

F �
1
4� 2

1, � 2
2 �

1
4� 2

1, � 2
3 �

1
4� 2

F, � 2
4 �

1
2� 2

F of ci. However, there is no proof that W achieves the lowest
possible �F.

� 2
F � d�1� 2

2 � (1 � 2d�1)� 2
3 � d�1� 2

4 � V� , One component of �F in G and W is V� (in fact, �F �
1⁄4 �Xj�

2
j � 1⁄4FV�, result not shown), the variance of the long-where V� � (1 � d�1)(d � 2)/16FM.

term contributions of parents, which arises from the uncer-
Explicit solution of the five equations for the five unknown tainty over the future contributions of offspring. For example,
variances � 2

1, � 2
2, � 2

3, � 2
4, and � 2

F gives in W, a category 4 female (with two breeding female offspring)
may be the grandparent of two males or both the grandparent

� 2
F �

3
32

(1 � d�1)(1 � 2d�1)
FM

, of a male and the great-grandparent of a male (see Figure 2).
This creates a serious problem for d � 2 in which case the
contribution of a female is very largely determined by if, and

� 2
M �

1
32

(1 � d�1)(1 � 2d�1)
M 2

,
when, a sire occurs among her descendants [i.e., the expected
contribution provided by the sire alone is (1⁄2)s�1M �1, where

with s is the number of generations of descendants before the male
is born].�F � φW/16M, where φW � (1

1
2 �

1
2d�1 � d�2). (5)

The ultimate solution to minimize �F comes from consider-
ing multiple generations and long-term contributions, usingUnlike Gowe et al. (1959) for a fixed number of males, �F
Equation 1. Unlike ci above, the long-term contribution mea-decreases up to d � 4 and then increases in system W (i.e.,
sures the ultimate contribution of a breeding individual toadding more females increases �F), with the limiting forms
the gene pool (Woolliams et al. 1999), extending beyond thefor d � 1 and d → ∞ being identical to Gowe et al. (1959).
next generation. Management of contributions over multipleIn systems G and W, minimizing �F is based upon minimiz-
generations avoids the uncertainty shown for G and W overing the variance of the change in frequency of a neutral allele
future contributions of offspring and allows us to derive thein the population over a single generation (� 2

�q), using the
minimum possible �F. In the appendix, we show that therelationship that �F � � 2

�q/[2q(1 � q)] (Falconer and
lowest possible �F for any population with different numbersMackay 1996). Although this is the prevailing approach in
of breeding males and females is �F � φ/16M, where φ �quantitative genetics, it is valid only when the choice of parents
4⁄3[1 � 2(1⁄4)d]. We present a breeding system (denoted V) thatin any generation is independent of all other generations.
achieves this minimum.With this approach, reducing �F depends on reducing the

System V (see Figure 1c) has d � 1 categories of breedingvariance of the weighted contributions of breeding individuals
to the next generation (Hill 1979), i.e., on the variance of individuals, one male category and d female categories. Those
weighted family size, ci � 1⁄2(M �1mi � F�1fi ), where mi and fi categories are as follows:
are the number of male and female offspring of breeding

1. M male parents, with 1 male and d female offspring each;individual i. W yields lower �F than G, because it creates a
negative covariance between the number of male and female 2. M female parents, with a male offspring each;
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and within d generations each female category produces male
descendants. Hence, V distributes male descendants as equally
as possible among females. With V, �F decreases monotoni-
cally in d, approaching 1/(12M) for large d. V avoids the
disturbing property of W that �F increases as females are
added to the population.

Corrections to predictions: Woolliams and Bijma (2000)
showed that predictions based on long-term contributions
are expected to underestimate �F by a proportion of �2�F.
Therefore all predictions of �F presented are scaled from
those above by (1 � 2�F); i.e., �F 	 is presented where �F 	 �
(1 � 2�F)�F, and �F is as given above. It is important to note,
however, that the adjustment from �F to �F 	 is of second
order, and unadjusted predictions made via contributions are
identical to those provided by, for example, Hill (1979) and
Wang (1997).

Monte Carlo simulations: To check the accuracy of the
predicted rate of inbreeding, each of the systems of manage-
ment described above was simulated stochastically. Each simu-
lated population was composed of 40 discrete, nonoverlapping
generations, with M � 4 males and F � Md females per genera-
tion (d � 1, 2, . . . , 20 dams per sire). The number of male

Figure 2.—Example of female lineages following system W and female offspring per dam was determined according to
of Wang (1997), where the mating sires were omitted for each dam’s category, following one of the above systems of
simplicity. The lineage with solid symbols represents a category management. Each breeding male was mated to d randomly
4 female at generation t that is both the grandparent of a first selected females. Nonrandom mating was addressed also by
male and the great-grandparent of a second male. The same simulation for a limited number of cases of system V. Further
category 4 female might have mothered two category 2 fe- details concerning nonrandom mating are given below in the
males, being in that case the grandparent of two males (exam- discussion. The inbreeding coefficient was calculated from
ple not shown). the pedigree relationships, and the asymptotic rate of inbreed-

ing was obtained as the average over the last 20 generations
of each simulated pedigree. Each simulation was composed
of 500 replicates.

3. M female parents, with 1 category 2 female offspring each;
. . .

d. M female parents, with 1 category d � 1 female offspring RESULTS
each;

d � 1. M female parents, with 1 category d female and 1 Rates of inbreeding obtained from the above equa-
category d � 1 female offspring each. tions for G, W, and V are presented in Figure 3 as a

function of d, together with rates of inbreeding obtainedIn V, each male is mated to a single female from each
category. Note that with d � 2, V gives identical �F to Wang from simulated pedigrees. Results from simulations
(1997). Unlike previous schemes G and W, with scheme V agreed very closely with predicted values from the three
both the sex and the category of each breeding offspring are systems. Although predicted �F made via contributionsprescribed automatically ad infinitum along the lineages. An

depends on M and d according to Equations 4–6, theanalogous analysis to previous schemes shows for V that
differences in �F between any two systems for a given

�1 � (2M )�1, �2 � (4M )�1 . . . �d � (2d M )�1, �d�1 � (2d M )�1

d do not depend on M. Therefore, current comparisons
with M � 4 are fully applicable to any other M. Consider-� 2

1 �
1
4 �

d�1

j�1

� 2
j

ing first system G vs. V in terms of difference in �F
[100 
 (�FG � �FV)/�FV], the maximum is attained� 2

2 � 1
4

� 2
1, � 2

3 � 1
4

� 2
2 , � 2

d � 1
4

� 2
d�1

with d � 3 (21.2%) and then decreases rapidly in d
approaching asymptotically a value of 12.5% (d → ∞).� 2

d�1 � 1
4

� 2
d � 1

4
� 2

d�1 . (6)
Considering now system W vs. V in equivalent terms

The d � 1 equations in d � 1 unknowns (i.e., � 2
j , j � 1, . . . , [100 
 (�FW � �FV)/�FV], there is no difference with

d � 1) have a unique solution with � 2
j � 0; i.e., there is not d � 2, but it rises rapidly in d (5.1% when d � 3, 7%

variance of contributions within categories. Thus by following when d � 4) with a limiting form identical to G vs. Vthis scheme the only variance attached to genetic contribu-
(12.5%, d → ∞).tions is the variance among category means. Finally

An illustrative example of the impact the absence of
the variance attached to female genetic contributions�F �

1
4M ��

d

j�1

1/22j � 1/22d �
might have on �F is also given in Figure 3 by 1/

� φV/16M where φV � 4⁄3[1 � 2(1⁄4)d ]. (16M)(1 � d�1). This hypothetical minimum �F results
from the unrealistic assumption that when F � M there isThe rationale behind V is as follows. For any population with
no difference in contribution among female categories,F � Md females, it takes at least d generations before each

female has a male descendant. V has d female categories, and �F would be 33.3% lower than that of system V



1593Minimum Inbreeding

Figure 3.—The asymptotic rate of inbreeding
by utilizing different systems of management plot-
ted against the mating ratio (d dams per sire),
according to predictions made via contributions
(lines) or simulations (symbols). The thin solid
line is the hypothetical minimum with equally
contributing females (1 � d �1). The rate of in-
breeding is the plotted value divided by 16M,
where M is the number of breeding males.

when d → ∞. Another example (not shown) comes from sures the departure from the random union of gametes
unmanaged populations of identical size to those de- in the gene pool. Deviations from Hardy-Weinberg equi-
scribed above, but with Poisson distribution of successful librium indicate preference for (� � 0) or avoidance
offspring among parents, random mating, and no selec- of (� 
 0) matings between relatives. Because V achieves
tion (Wright 1931). In these circumstances, the re- the lower bound of �r 2

i , it yields the minimum possible
sulting �F would be 100% higher than that of system �F for any �. This can be seen by noting that the result
V when d � 2, and it would still show �F 50% higher of Woolliams and Bijma (2000) is a complete descrip-
than that of system V when d → ∞. tion of �F that accounts for any specific mating strategy

for parents. As a special case, we have shown that when
� � 0, the minimal �F � 1/(12M) for large d is less

DISCUSSION than the value 3/(32M) obtained from considering G
or W with large d and �1/(16M)(1 � d�1) (Figure 3)This article has shown that by managing genetic con-
that might be assumed to be minimal, on the basis of thetributions over generations via the pedigree, using sim-
erroneous argument that female genetic contributionsple methods, schemes can be designed and imple-
would all be of order 1/F.mented to achieve �F � φ/(12M), where φ � [1 �

The inference that follows is that further reductions2(1⁄4)d], the lowest possible �F with random mating. For
in �F below those presented for random mating in re-simplicity, this assumes (as does the following discus-
sults can be made only by having (� � 0), with matingsion) that F � M. The strategy used in V can be viewed
schemes in system V that preferentially mate relatives.as a multigeneration generalization of Wang (1997),
Strictly, the � in the results obtained by simulation waswhere lineages of dams and their genetic contributions
very slightly negative due to the division of the gene poolare prescribed ad infinitum across generations to avoid
into two sexes. This inference for preferential matingany uncertainty over offspring contributions. The
of relatives may seem counterintuitive because manymethod gives identical predictions to that of Wang for
studies of populations, whether directionally selected ord � 2. However, for d � 2 with random mating, the
managed for conservation, suggest that implementingmethod improves over previous methods and avoids an
preferential mating of relatives (� � 0) increases �Funsatisfactory characteristic of Wang’s strategy, namely
(Caballero and Hill 1992; Caballero et al. 1996;that when M is fixed and d increases, i.e., more females
Wang 1997). However, the condition for preferentialare added to the scheme, �F increases.
mating of relatives to reduce �F is that it should notThe sum of squared contributions for the V system
increase �r 2

i by a factor greater than the factor it reducesis φ/(3M), where φ � [1 � 2(1⁄4)d], and the appendix
the term (1 � �). The observation that preferentialshows that φ/(3M) must also be the lower bound for
mating of relatives can reduce �F has been describedthe sum of squared contributions in the population; i.e.,
before (Caballero 1994), but only for the special casewe have established an achievable lower bound for �r2

i .
of d � 1 (M � F) and where mi � f i � 1 causes �r 2

i toIn general, �F � 1⁄4(1 � �)�r 2
i (Woolliams and Bijma

be fixed. Note that this corresponds to the rule of son2000), where � is the deviation from Hardy-Weinberg
equilibrium (Caballero and Hill 1992), which mea- replacing his sire and daughter replacing her dam that
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leads to absence of variance attached to genetic contri- may reduce fitness due to short-term inbreeding depres-
sion.butions among parents. The resolution of this issue

comes from observing that G and W still have substantial Scheme V has important implications for the conser-
vation of wild captive species and rare domestic breedsvariance of long-term contributions among breeding

males and among breeding females, since they attempt of livestock. Populations with 5–20 males or 100–1000
females, for example, are classified as endangered byto manage contributions only to the descendant genera-

tion, i.e., ci. In W, for example, the coefficient of varia- FAO (2000). When applying V, populations of at least
9 breeding males have the potential to be geneticallytion of the sire contribution varies from 0.17 to 0.35 as

d moves from 3 to ∞ (see materials and methods). viable according to FAO criteria (FAO 1998; i.e., �F

1%). For any desired �F, the classical solutionThe imposition of � 
 0 in G and W by avoiding matings

between relatives (i) reduces the potential �F by remov- (Wright 1938) requires 50% more breeding males
than V requires when there is no stringent restrictioning unnecessary variation within breeding categories,

i.e., by promoting the mixing of lineages, which reduces on the number of breeding females.
All the results derived in this study apply to chromo-genetic drift and therefore also �r 2

i , and (ii) increases
the potential �F by encouraging heterozygosity (Cabal- somal DNA only, not to mtDNA. The study has not

considered (i) overlapping generations, but with nolero 1994), since (1 � �) � 1. Wang (1997) demon-
strates that the impact of the first effect more than selection the V schemes should generalize in a straight-

forward manner, and (ii) the addition of molecularoffsets that of the second. According to the same reason-
ing, the imposition of � � 0 in G and W would have tools, which may enhance the sampling of individuals

within families (Wang 2001). Additionally the study hasadverse consequences on �F.
The system V, however, has no variance for long-term not considered the application of selection tools in con-

servation of genetic resources (Grundy et al. 1998b;contributions, other than those defined by the category,
so that � 
 0 can have no benefit. Given the category Sonesson and Meuwissen 2001), although Grundy et

al. (1998b) showed that these tools are also essentiallyof an individual, random drift in V originates solely
from Mendelian sampling of alleles. The amount of drift minimizing the sum of squared contributions among

the candidates. Caballero et al. (1996) suggest thatdue to Mendelian sampling decreases with increasing �,
because an increase in � reduces the proportion of algorithms such as minimum coancestry selection and

mating achieve the best possible means for reducing �F,heterozygote individuals in the population. Our results
are consistent with those presented by Wang (1997). but this work clearly shows this is not the case. Practical

implementation of system V in conservation would de-For example, for M � 4, d � 3, V with only random
mating has Ne � 23.3, compared to 21.4 for W with mand that rules for nonavailability of offspring or off-

spring of the right sex may be required, and such aherd-based half-sibs avoidance (termed NM by Wang)
or minimum coancestry mating. Analysis of Equation 9 development has not been considered in this article.

Consideration of the argument in the appendix mayof Wang (1997) shows that �F for W with NM ap-
proaches 1/(12M) for large d, which is the same as V lead to rules that are simply applied, and other ap-

proaches may prove to be more robust, yet the simplicity(with � � 0, a suboptimal � for V) but at a slower rate.
Additionally, by writing �F � 1⁄4 �r 2

i (1 � �i) we can of the argument in the appendix is highly valuable for
general understanding. This study has established mini-predict which mating has the biggest impact on �F in the

scheme V. We have verified by simulation that mating mum lower bounds for inbreeding rates that are achiev-
able through pedigree recording alone. The major stepcategory 2 females to their male half-sibs is the most

powerful single-nominated mating to reduce �F, reduc- in accomplishing this task was the management of long-
term contributions over multiple generations.ing it by 5%. The mating of the same sire to the category

3 half-sib female would be the next additional step. M. Grossman, J. A. M. van Arendonk, C. Haley, and two anonymous
Partial-sib mating has been suggested as a way of purg- reviewers are acknowledged for giving useful comments on this manu-

script. The authors gratefully acknowledge support from the Euro-ing genetic load (Templeton and Read 1984; Cabal-
pean Commission in the form of a Marie Curie Fellowship (L.S.) andlero and Santiago 1995). However, the utility of purg-
from the Department for the Environment, Food, and Rural Affairsing deleterious and detrimental alleles by preferential
in the United Kingdom (J.A.W.).

mating of relatives (� � 0) is a contentious issue in
conservation genetics (Hedrick 1994; Frankham 1995;
Lacy and Ballou 1998; Visscher et al. 2001; Frankham
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